Algebraic Groups: Part Ii
نویسنده
چکیده
4. Constructible sets 17 5. Connected components 18 6. Subgroups 20 7. Group actions and linearity versus affine 22 7.1. 24 8. Jordan Decomposition 27 8.1. Recall: linear algebra 27 8.2. Jordan decomposition in linear algebraic groups 30 9. Commutative algebraic groups 35 9.1. Basic decomposition 35 9.2. Diagonalizable groups and tori 35 9.2.1. Galois action 39 9.3. Action of tori on affine varieties 42 9.4. Unipotent groups 44
منابع مشابه
Controlled algebraic G-theory, II
There are two established ways to introduce geometric control in the category of free modules—the bounded control and the continuous control at infinity. Both types of control can be generalized to arbitrary modules over a noetherian ring and applied to study algebraic K-theory of infinite groups. This was accomplished for bounded control in part I of the present paper and the subsequent work o...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras II. Regularity
This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...
متن کاملDeformation of Outer Representations of Galois Group II
This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...
متن کاملALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)
We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)
متن کاملAbstracts of lectures for Banff meeting, Groups and Geometries, May 4-8, 2015
s of lectures for Banff meeting, Groups and Geometries, May 4-8, 2015 Michael Aschbacher: Quaternion fusion packets Abstract I’ll discuss work on a fusion theoretic version of the so-called Classical Involution Theorem for groups. The project is part of a program to simplify part of the proof of the theorem classifying the finite simple groups.I’ll discuss work on a fusion theoretic version of ...
متن کامل